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Turbulent vortex rings? 

By T. MAXWORTHY 
Departments of Aerospace and Mechanical Engineering, University of 

Southern California, Los Angeles, California 90007 

(Received 29 June 1973 and in revised form 17 December 1973) 

We consider the motion of the mass of fluid ejected through a sharp-edged orifice 
by the motion of a piston. The vorticity formed by viscous forces within the 
separated flow a t  the sharp edge rolls up to form a concentrated vortex which, 
after a development period, consists of a core of very fine scale turbulence 
surrounded by a co-moving bubble of much larger scale turbulence. This bubble 
entrains outer fluid, mixes with it, and deposits the majority into a wake together 
with some small fraction of the total vorticity of the ring. Enough fluid is retained 
to account for the slow growth of the whole fluid mass. A theory which takes 
account of both the growth process and the loss of vorticity is proposed. By 
comparison with experimental measurements we have determined that the en- 
trainment coefficient for turbulent vortex rings has a value equal to  0.01 1 ? 0.001, 
while their effective drag coefficient is 0.09 0.01. These results seem to be 
independent of Reynolds number t o  within experimental accuracy. 

1. Introduction 
Vortex rings have been the subject of several recent investigations. The 

interest seems to be based mainly on potential industrial applications although 
the basic fluid mechanics involved has also come in for its share of attention, 
It is the latter that  we emphasize here, but hope that our results will be of use 
to those with technological applications in mind. Among the latter are, first, 
a desire to  use rings to  transport industrial waste to high altitudes (Turner 1960). 
A brief comment on this is given a t  the end of 5 2. Second, the increased interest 
in the trailing vortex pair that exists behind a lifting surface has spawned a general 
effort in vortex dynamics. There seems to  be some hope that an understanding of 
the more readily produced vortex ring will result in a better feeling for the 
processes involved in the aircraft wake problem. We share this feeling and hope 
t o  make a contribution to this subject a t  a later date. We also believe that vortex 
rings, though not necessarily those treated here, will serve as a useful model for 
the elements of turbulence in complicated high Reynolds number flow problems. 

Most of the work on the initial stages of development of the vortex ring formed 
a t  a sharp-edged orifice has been performed by Krutsch ( 1939), Sullivan, Widnall 
& Ezekiel (1973) and Widnall & Sullivan (1973), although some relevant com- 
ments have been made by Maxworthy (1972). I n  the present work, the motion of 

t With an appendix on an extended theory of laminar vortex rings. 
15-2 
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primary interest is that which takes place after these initial phases have passed. 
It has been closely observed by only a few investigators, and even now, is not 
completely understood. We hope partially to remedy this situation by describing 
this motion and by proposing a theoretical model which seems to be consistent 
with experimental observations. 

Johnson (1970, 1971) has published some data, but his interpretation is 
difficult to reconcile with the results we shall present. Further comments follow 
in 5 5. 

The results presented here depend heavily on the concepts developed by the 
present author for lamina,r vortex rings (Maxworthy 1972) and an appendix on 
the extension of that theory is presented to round out our discussion. 

2. Experimental procedure and some preliminary observations 
The apparatus shown in figure 1 was used to study the properties of turbulent 

vortex rings in the Reynolds number RUlv t  range 0.5 x 104-1.5 x lo4. 
Rings were formed by pushing on the piston of the generator, displacing fluid 

through the hole. Vorticity was created a t  the sharp edge and this rolled up to 
form a concenhated vortex. Ring velocity and size could be varied over a wide 
range by varying the force with which the piston was pushed and by varying the 
volume of fluid displaced. Two hole diameters (3  and 5cm) were also used in 
a series of tests designed to  determine the character of the flow and to test the 
theoretical model derived from these observations. 

The sequence of events that  occurs during any one experiment is illustrated 
on figure 1 .  When the piston of the generator is pushed, a blob of fluid emerges 
from the hole. It rolls up into the form of an oblate spheroid$ owing to the self- 
induction of the vorticity produced a t  the edge of the hole (figure 2, plate 1) .  
The vorticity distribution which results is highly peaked, but there are small 
amounts all the way out to the edge of the moving fluid mass (Sullivan et al. 1973; 
Maxworthy 1972). Some finite portion of the central concentrated region then 
becomes unstable to short wavelength disturbances (there being typically 
12 waves around the core in our case) (Widnall & Sullivan 1973; Maxworthy 
1972).$ These instabilities grow to finite amplitude and then go through a 
tumbling or breaking process. 

t Where R is the radius of the ring defined in figure 1 and more clearly in figure 6(a). 
U is the ring velocity and v the kinematic viscosity of the fluid. 

1 This moving fluid mass is variously called a bubble or ring in what follows. The latter 
name is unfortunate because it does not accurately describe the geometry ; however, 
historical precedent requires that we use this term occasionally, and we hope i t  causes 
no confusion. 

3 There are currently two possible explanations for the occurrence of these unstable 
waves. Widnall & Sullivan (1973) suggest a short wavelength instability of the core flow. 
Their theory is, unfortunately, only valid if the wavelength of the disturbance is larger 
than the core diameter, which is not true experimentally. The ultimate flow which emerges 
in the tests should also be unstable according to their theory, but is not ! Moore & Saffrnan 
(1973, private communication) have attempted a small perturbation analysis with in- 
conclusive results, but a suggestion that the flows considered by Widnall & Sullivan are 
stable. Recently Prof. Widnall has extended her stability theory to include short wavc- 
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FIGURE 1. Apparatus. Showing sequence of events creating a turbulent vortex ring. 

At about this stage in the ring’s motion, the curve of distance x travelled by 
the ring vs. time t or alternatively, ring velocity U us. x undergoes a rapid change 
in slope. For example, if one plots these curves on semi-logarithmic graph paper, 
both the motion before and the motion after instability are close to  straight 
lines, but each with a different slope (Krutsch 1939; Maxworthy 1972; Widnall 
1973, private communication). I n  Maxworthy (1972), it was erroneously assumed 

length disturbances and realistic vorticity distributions, finding better agreement with 
experimental results. Maxworthy’s (1972) suggestion that vorticity of opposite sign to 
that of the main core is swept into the vortex bubble to produce conditions conducive 
to Rayleigh-Taylor instability is an attractive but unproven alternative. Hopefully, 
further work will unravel these difficult problems. For present purposes, all we need know 
is that such an instability does exist and that it leads to a turbulent core in the final 
stages of ring motion. 
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that because of this exponential behaviour both before and after instability 
the mechanism describing each regime was the same. It is clear from the present 
work that this is not so, and that even though the general features of entrain- 
ment are similar, the details are not. 

The fluid participating in the instability ends up as a rapidly rotating core of 
very fine scale turbulencet for which the ratio RlaS remains constant a t  a value 
of approximately 10 as the ring propagates (Johnson 1970). As in most rapidly 
rotating flow, the turbulent fluctuations perpendicular to  the axis of rotation are 
suppressed. This means that the interface between the core and its surroundings 
is only slightly contorted and i t  entrains fluid very slowly, as the measurements 
will show. It is this process uhich controls the overall growth rate of the ring. 
At the same time, vorticity is being removed from the ring and being deposited 
into the surrounding fluid bubble, from which i t  eventually finds its way into 
a wake. During this process, the outer region of the spheroid has also become 
turbu1ent;t however, the mean vorticity within i t  is low and the turbulent 
scales are large, being a substantial fraction of the size of the spheroid. This 
region, in a sense, processes entrained fluid. Fluid is entrained by the large-scale 
corrugations of the interface and mixes with interior fluid. Most of i t  is then 
rejected to  the wake and only a small amount retained, enough to account for 
the very slow growth of the core and the turbulent spheroid. These processes 
can be demonstrated in three ways. In the main set of experiments, a compact 
blob of dye was ejected from the orifice (figure 3, plate 2).  The outer region im- 
mediately began entraining ambient fluid, mixing with i t  and depositing the 
mixture into the wake. The dye concentration in the outer regions became more 
and more dilute, leaving only the slowly growing core with any dye at all. I n  
the second, less extensive set of experiments, an undyed blob of fluid was ejected 
from the generator and was allowed to propagate through dyed ambient fluid. 
The resulting flow is shown in figure 4 (plate 3) and a sketch in figure 7 ( a ) .  The 
outer region of the moving bubble was immediately filled with dyed fluid, but 
the core remained clear. As time progressed, a thin skin around the core became 
dyed (figure 7 a ) ,  but penetration to the centre of the core never seemed to  take 
place, a t  least during our experiments. The third experiment was undertaken to  
try to  get some idea of the relative scales of turbulence in the two regions. A 
weak salt solution was ejected into the tank and the resulting density field 
observed using a shadowgraph apparatus. Figure 5 (plate 3) shows a photograph 
taken using such a system. The fluid density is low enough and i t  is early enough 
for the ring dynamics to be dominated by the initial impulse. The extent of the 
outer bubble can be clearly seen, as can the interface between it  and the inner 
ring. The focusing effect of this ring tends to obscure the turbulence structure, but 
visual observations show it  to be small. The major motions in the outer bubble 
are of larger scale; they mix environmental fluid with bubble fluid and deposit 
the majority into the wake. There are, clearly, small-scale streaks in the region, 

t Until more detailed measurements are undertaken, the actual magnitudes of these 
turbulent quantities can only be conjectured. From our visual impressions of the flow, 
the major scale in the core was about *a, while that in the bubble was about )R .  

2 R is the main radius of the toroidal ring and a it,s minor radius (see figure 6a). 
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FIGURE 6. (a) Showing the outer regions of the moving fluid mass as a processor of ambient 
fluid. A large amount B is entrained, but most is rejected to a wake. ( b )  Streaklines for 
the turbulent ring. 

but they are being convected around and stretched by the large scales, and only 
show up because of the small diffusion coefficient possessed by the denser salty 
water. 

All of these observations show that the core is also gaining and losing fluid, 
but a t  a much slower rate than the bubble; thus, not only is the bubble fluid 
slowly entrained but from time t o  time, the turbulent flow in the bubble tears 
off a small piece of the core (together with its associated vorticity) and mixes it 
through the bubble and out into the wake. It is this process which causes the 
loss of ring impulse. The observations show that, in all cases, the ring remained 
turbulent during the whole of its motion in our 2 m tank. We suspect that because 
the Reynolds number of the ring decreases as time progresses (see 3 3) the ring 
could become laminar once some low value of Re has been reached. 

Figures 6 and 7 show four alternative ways of looking a t  these processes; 
the interested reader is a t  liberty to choose the one that best suits his tastes. 
Figure 6(a )  shows the bubble as a processor of ambient fluid. Ambient fluid 
enters the interface, mixes with the interior and is rejected to the wake; only 
a miniscule amount is retained. Figure 6 ( b )  shows the average motion of particles 
as they approach the ring and are either retained or rejected. An alternative view 
of the entrainment process is shown in figure 7 (b) ,  where it takes place through 
a shear layer in much the same way as Maxworthy (1972) proposed for the case 
of a laminar vortex ring. Finally, figure 7 ( a ) ,  as already described, shows the 
result of propagating a ring through a dyed environment with the resultant 
mixing and slow penetration of dye into the core. 
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FIGURE 7. (a) Showing diagrammatically the process shown photographically in figure 4 
(plate 3). Emphasizing the fact that the core remains clear with only a small concentration 
of dye in its outer surface. ( b )  Showing entrainment taking place through a shear layer 
with a thickness which is a substantial fraction of the size of the ring. 

These observations also make it fairly clear that  a straightforward application 
of vortex-ring dynamics to  the disposal of chimney waste (see 5 1) cannot be 
successful. Only if one is able to inject smoke direct,ly into the core itself will 
the ring transport the pollutant without depositing it into the immediate en- 
vironment. Experiments on such schemes are at present underway and include 
the effect of making the density of the core fluid different from that of its 
surroundings. 

3. Vortex-ring model and theory 
It has been clear for some time that the information contained in previous 

measurements was not being interpreted properly. Both the work of Krutsch 
(1939) and the present author (Maxworthy 1972) had confirmed that the varia- 
tion of U with x was very close to  exponential, or that  U = kt-1. Such a variation 
is far enough from that predicted from the assumption of an invariable impulse, 
i.e. U = ct-P, that it was clear that some new effect had to be considered. 

On the basis of the physical description in the previous section, especially 
the clear indication of an impulse loss to a wake, we propose the following simple 
model which includes the effect of this drag force. The turbulent core and its 
co-travelling bubble are assumed geometrically similar a t  all times. From an 
experimental point of view, the most convenient length scale is the distance (2R)  
between the centres of t,he almost circular core (figures 1 and 6) .  Therefore, in 
the theoretical treatment, this quantity will be used as the characteristic dimen- 
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sion of the ring even though it  is smaller than the maximum diameter. It is 
also convenient t o  relate the actual geometry of the moving fluid mass to  that 
of a sphere of radius R through some unknown scale factors. As we shall see, this 
results in a re-definition of the two basic parameters of the problem: an entrain- 
ment coefficient a: and a drag coefficient C>. We assume that the vortex starts 
a t  time t = 0 with a size R(0)  E R, and an initial velocity U ( 0 )  = U,. 

Since the flow is turbulent, there is no natural length in the problem except 
the distance from the origin. This in turn means that the ring must grow linearly 
with distance. This working hypothesis is shown to agree with our experimental 
results, and therefore suggests that the turbulent Reynolds number is large 
enough for viscosity to be unimportant in determining the gross properties of the 
flow. An alternative form of this statement is the so-called entrainment assump- 
tion, which linearly relates the rate of growth of bubble volume to its instan- 
taneous surface area and velocity U (cf. Morton, Taylor & Turner 1956): 

d[$nR3k,]/dt = 4nR3Ua'k2 

or dR3/dt = 3a:R2U, (1) 
where a: = a'k,/k, and k, and k, are coefficients which relate the actual volume 
and surface area of the ring to those of an equivalent sphere of radius R .  Although 
this might seem somewhat arbitrary, one can easily show that the same results 
hold if one considers the volume and surface area of the ring (torus) itself in the 
calculation. 

Similarly, we can write the impulse equation as 

d[2npR3Uk3]/dt = - &2LpU2nR2k4 

or d[R3U]/dt  = - U2R2,  ( 2 )  
where Cg = C$k,/k, and k, and k4 are again geometrical coefficients. The right- 
hand sides of these equations can either be written down by direct analogy with 
the drag force on a solid body or by calculating the amount of impulse deposited 
into the wake, cf. Maxworthy (1972).  

An immediate result of ( I )  is, as has already been mentioned, 

dR/d t  = aU,  

or since u = dx/dt 131 
that dR/dx = a. (4) 

Using ( 3 )  in ( 1 )  and ( 2 )  leads us to 
dR3/dx = 3a:R2 

and d[R3U] /dx  = - $Cg UR'. 

If (6) is expanded and one substitutes from ( 5 )  and (4) and integrates from the 
initial conditions, one gets 

Integration and simplification gives 
= &((%/4al+3), ( 7 )  
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where 0 = U/Uo and R = R/R,. Equations (3) and (4) can be integrated to give 

0 = (dE /d t )a  ( 8 )  

and R=aE++,  (9) 
where i = t / tc,  t, = Ro/aUo and E = x/Ro. 

relationships 
We can now combine all of these basic results to  get the following set of 

R = {[CD+4]i+ l}1/(c~+4) = aE+ 1, 
0 = {[c,+ 41 i+ 1}- (cD+3) / (cD+4)  = {&+ 1 ) 4 C ~ + 3 ) ,  

(10a, b )  
( l l a , b )  

where CD = C;/4_..- 

Reynolds number, and is given by 
The product UR is proportional to both the circulation of the ring and its 

UR = {[c, + 41 f+ 1}-(cD+z)/(cD+4) = {ae + 1}-(cO+2). 

To complete the list of all the useful quantities, we calculate the product i7fi3, 
which is a measure of the impulse remaining in the ring or alternatively the 
amount lost to  the wake (cf. Maxworthy 1972): 

u R 3  = {[C, + 41 I+ 1}-edc~+4) = {a% + ~ } - C D ,  

which, as we would suspect, becomes constant when CD -+ 0. 

When C, is small, the power law is exceptionally simple: 
For long times (i+ 00) all of these quantities have power-law asymptotes. 

R - ii, U N i-2, 0 R  N i-4, 0 x 3  - c0nstant.t 

However, as we have seen and shall see, these are not particularly useful results 
since the motions of real vortex rings seem t o  be dominated by the momentum 
loss effects. 

By measuring Ras a function of5  we can readily determine a and by measuring 
as ;I function 5 we can determine Cb. Other alternatives would be to  measure 

R = fi(i) or 0 = fz(i) or make use of the relationship between I and 5, namely 

[CD + 41 f+ 1 = [aE+ 1]cD+4. 

These latter depend on CD in a more complicated way and are not so convenient 
to  use except as checks on the consistency of the measurements. 

From our previous commentas, i t  is clear that both a and Cb depend on the 
turbulent processes occurring in the core. One would hope that the latter are 
independent of the Reynolds number of the ring and that a and C; are universal 
constants for all well-formed rings. 

4. Experimental results and comparison with theory 
I n  order to test the model proposed in the previous section, we performed 

a series of tests in which Rand U were measured as functions of x and t .  Data were 
recorded photographically by a camera that was traversed downwards a t  the 

t The fact that the circulation decreases while the impulse does not is, of course, 
attributable to the fact that vorticity is still being cancelled at the centre-line of the ring 
even though none is deposited into a wake. 
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FIGURE 9. Ring diameter 2R as a function of distance traversed 2, 
for various Reynolds numbers. 

same speed as the ring, thus reducing parallax effects and giving a large image of 
the ring. Figure 8 (plate 4 )  shows examples of such experiments. Initial Reynolds 
numbers Re,? varied between 14000 and 30000. 

From the measurements of R us. x (figure 9), the value of a could immediately 
be found. Values varied between the extreme values, 0.01 and 0.012, shown. 
A large amount of data clustered around a = 0.011 but most of this has been 
suppressed for the sake of clarity. We believe that there was no strong trend 
with Reynolds number, for despite the small absolute increase in the size of the 
bubble and the suspicion that this means that the flow could still be dependent 
on initial conditions, the bubble has actually processed an enormous quantity of 
fluid; in fact, practically all it has encountered during its motion. 

The velocity data were then reduced according to the prescription indicated 
in ( I l b ) ,  i.e., 

From the slope of these curves (figure 10) values of C, between 1.8 and 2-7 
were found; these reduced to values of (2; between 0.084 and 0.108 for the drag 
coefficient of the equivalent sphere. The drag coefficient based on the diameter 

t Two Reynolds numbers can be conveniently defined. The first, Re, = UeDe/v ,  was 
that calculated using the vortex velocity and diameter as it left the exit hole. The second, 
Re, = U,,D,lv, was based on values measured a t  the beginning of the final turbulent 
ring phase and varied between 14400 and 6500. 

= [ax:+ 1]--(cD+3). 
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FIGURE 10. Ring velocity 0 as a function of the distance af+ 1.  

of the actual moving fluid mass will obviously be much smaller than this, since, 
like a Hill’s spherical vortex, the ratio of total diameter to diameter between 
centres of rotation is approximately Q in our case. The drag coefficient based on 
the frontal area of the moving bubble is thus estimated to be 0.04 f 0.005. This 
is to be compared wit,h the value of 0.23 for a solid sphere when the boundary 
layer is turbulent before separation, i.e. in the transcritical regime (Maxworthy 
1969). Again, there was no discernable trend with Reynolds number. However, 
i t  is clear from the error estimates that the accuracy of the experiments was not 
very high and that a Reynolds number trend could be hidden therein. It is, 
however, significant that  the Reynolds number was decreasing throughout the 
course of any one experiment and yet there was no departure from a linear de- 
pendence of size on distance. At some later stage, the ring probably becomes 
laminar when its Re falls below some maximum crit,ical value. (The value of 600 
found in Maxworthy (1972) is one possible candidate for this value.) The present 
kxperiments did not continue long enough for this stage to be reached. 
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5. Conclusions and discussion 
We thus conclude that the motions of real vortex rings depend critically on 

two €undamental concepts. The first, that  of entrainment, is already quite 
familiar, although in this case accepted concepts must be modified to account 
for the strong constraints placed upon the turbulence by rotation. Thus, the 
controlling entrainment rate within the core is only slightly larger than that due 
to molecular diffusion alone. As we have shown, the entrainment rate for the 
whole bubble is much larger than this, with the result that most of the entrained 
fluicl is rejected to  a wake. This second concept of rejection or detrainment is 
probably only of consequence in some classes of unsteady flow in which there 
is a turbulent interface to the rear of a large turbulent fluid mass. I n  the present 
case, the vorticity contained within the ring is slowly deposited into the wake 
along with the detrained fluid. This also means that the ring impulse must de- 
crease to appear as a momentum defect in the wake. We have found that the drag 
force on the body that this represents is equivalent to assigning a drag coefficient 
of 0.04 _+ 0.005 to  the motion, where this drag coefficient is obtained by normalizing 
the drag force with the dynamic pressure of the approaching stream multiplied 
by the frontal area of the moving fluid mass. 

As previously mentioned, our results appear to  disagree with those of Johnson 
( 1  970, 1971) for ranges of parameters (i.e. Reynolds numbers and distance) that 
do not seem to be greatly different. Two points stand out: one is his relationship 
2RID = K,[(x-x,)/D]*, where D is the orifice diameter. However, it appears 
that some of his data were taken before the initial instability phase was over 
(i.e. before x/D z 15) and therefore before the final similarity phase had been 
reached. These points tend to weight his data away from agreement with ours. 
We have attempted to plot his data, in the similarity range, as accurately as 
possible, and it seems that they basically agree with ours. The other difficulty 
concerns his statement that momentum (presumably impulse) is conserved. 
With a wake present, this is clearly impossible although the accuracy of his data 
reduction scheme might have to be very high for the difference to be clearly 
revealed. One should also observe that i t  is not possible to use his method to make 
predictions of ring motion because none of the additive constants he derives 
can be logically related to some basic characteristic of the ring (e.g. its Reynolds 
number). Our scheme on the other hand can be used predictively once a set of 
initial conditions has been specified somewhere in the similarity region of motion. 

We gratefully acknowledge the National Science Foundation for its support 
of this work under Grant GK-19107 to the University of Southern California. 

Appendix. An extended theory of laminar vortex rings 
We extend the analysis previously presented in Maxworthy (1972) to take 

account explicitly of the momentum loss to a wake, i.e. an equivalent drag force 
on the laminar vortex ring. 

The equations to  be solved are a mass entrainment equation and a momentum 
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equation that equates the rate of change of the impulse of the vortex ring to the 
impulse loss i t  experiences. If R and U are measures of the size of t h e  ring and its 
velocity, then these equations are 

dR3/dt = yv$R)UJ,  (A 1)  

d( UR3)/dt = -BviRSU#, 

where y and are constants with values of order unity. 
Let 

R = C l t m ,  U = C 2 t n .  (A 3) 

By substituting (A 3) in (A 1 )  and (A 2) and equating exponents oft, we find that 
m = $n+$. 

By equating the coefficients o f t  in (A 2), for example, we eventually find a n  
expression for n which includes the viscous effects we wish to observe and shows 
explicitly how the Reynolds number of the flow enters our original calculation 
(Maxworthy 1972, p. 27). Thus 

u = t-&?Rei?ro-l 
1 

where Re, = U,R,/u (with U, and R, the initial velocity and size of the vortex 
ring) and 7, = toU,/Ro ( to  is the time that has elapsed from the formation of the 
ring a t  a virtual origin to  the time a t  which i t  is observed in the experiment, 
i.e., formed with a finite size a t  the orifice (Maxworthy 1972, p. 28)). I n  the ex- 
periments reported previously to had a value of, typically, 10 s while L\ and R, 
were in the ranges 2-10cm/s and 2-3cm, respectively. Thus, the quantity 
E = - $PRe;*rO has a range of values from about 0.1 a t  high values of Re, to 
about 0.5 at low values. The variation in velocity of the ring will then start out 
close to  the relationship U N t - l ,  as in Maxworthy (1972), but deviate more and 
more from this law as time progresses, as was found experimentally. Perhaps this 
result can be most readily seen by considering the variation of distance x 
travelled with t .  We find for small values of e that  

z.-logt-&(logt)2+ .... 
This first term again represents the experimental variation found previously 
while the correction term shows the effect of impulse loss to the wake as we have 
already crudely estimated. 
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